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Received 24 October 1974

Abstract. Using renormalization group arguments we expand n-point correlation functions
(for non-exceptional wavevectors) in expectation values of translational invariant short-
range operators O,. We use the fact that the Fourier components of our operators become
negligible for wavevectors g large in comparison to the momentum cut-off.

The correlation functions show the same non-analyticities at the critical point as the
expectation values {Q,>. The expansion coefficients are regular in the thermodynamic
vanables for g # 0. They can be expressed in terms of (a) functions which become singular
at ¢ = 0 and yield the scaling behaviour, and (b) functions which are regular at g = 0.
The expansion coefficients of the two-point correlation function are sums of both types of
functions.

1. Introduction

The static correlation functions show two characteristic features near the critical point:
(a) they obey scaling and (b) they show a non-analytic behaviour even for finite wave-
lengths as a function of the thermodynamic variables. These properties are discussed
on the basis of renormalization group (RG) ideas (Wilson 1971, Wilson and Kogut
1974) in this paper.

Consider the free energy F of the Hamiltonian

H = Hlg}+ ) x{4)04q)) (1.1)

(a factor — 1/kgT is incorporated in H and F). where H{g} is translational invariant and
parametrized by scaling fields g (Wegner 1972). The terms x(q)O(q) are perturbations of
wavelength g. We find that the free energy of this system equals the free energy F{g}
of the translational invariant Hamiltonian H{g} where we have an expansion

g = gi+%zMijk(Q)Kj(q)Kk(_q)+O(K3)- (1.2)

The coefficients M can be calculated from the RG equation. This confirms and refines
a conjecture by Fisher (1962) (compare Riedel and Wegner 1969) according to which
inhomogeneous perturbations to a system near criticality leave the non-analytic struc-
ture of the free energy basically unchanged but change the critical parameters, such as
critical temperature. Indeed the condition for criticality is g, = O for all relevant opera-
tors. Therefore at criticality we have g, = —4ZMkx+ ... (actually Fisher considered
an Ising antiferromagnet in a homogeneous magnetic field, but this is equivalent to an
Ising ferromagnet in a staggered magnetic field). Differentiating F with respect to ;
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Correlation functions near the critical point 711

and k, one obtains the representation for the correlation function (g # 0):

(Of@0L—q)> = T My(g)K 05 (1.3)

Therefore the correlation function (1.3) shows the same non-analyticities as a function
of the thermodynamic variables as the expectation values <O;> = (dH/dg;>.
The expansion coefficients M consist of two contributions

Mijk = Rijk+Sijk (1.4)

where R is a regular function of g and of the g's (provided no logarithmic singularities
appear ; logarithmic corrections will not be discussed in this paper), whereas the singular
part S obeys scaling:

S, {8} = @77 7S, 8./9}) (1.5)

with e = ¢/|q| (’s are the scaling exponents of the operators). S can be expanded in
powers of g./¢”. If y;+y, > d (d is the dimensionality of the system), then the leading
scaling behaviour of the two-point correlation function near the critical point is given by

Z Sia, {8710, (1.6)

where i runs over the indices of all operators and g™' runs only over the fields of the
relevant operators (the fields of the irrelevant operators provide corrections to the
scaling behaviour). This is in agreement with the expression for the spin—spin correlation

function proposed by Fisher and Langer (1968),
(S,S_> =q 2" "(A+Br/q'" +Clt|' 7¢/g1 "+ L) (1.7

(r = T—T,), where the first two terms come from (1) and the third term from the ex-
pectation value of the energy (H—E_,;,>. Fisher and Aharony (1973) showed that this
ansatz is consistent with an expansion of the correlation function around dimensionality
four and they determined the coefficients. Brezin et al (1974a) and Brezin et al (1974b)
derived equation (1.7) from the Callan-Symanzik equation (compare Symanzik 1971)
and generalized it to the case of a finite magnetic field and allowed for temperatures
below T,. They found a further contribution to the spin correlation function of the
n-vector model (n > 1) which scales like (S,S;—6;;S*/n)>. This term differs from zero
below T or for a finite magnetic field. Hecht (1967) calculated the spin—energy correlation
in the two-dimensional Ising model and found (S>q~*. All of these contributions are
contained in equation (1.6) which gives the general behaviour of the scaling part of the
correlation function.

To obtain equation (1.2) we transform the Hamiltonian (1.1) using the RG procedure.
This procedure has the following effects.

(i) Itreducesthelength scale by afactor e' and therefore transforms the perturbations
O{q) into perturbations e*'0 {ge'). Within linear approximation this yields the scaling
law for the correlation function if we bear in mind that the scaling fields g, transform
into g e

(i) If one chooses a RG equation with smooth momentum cut-off of order g,
then the perturbation O ,{qe’) becomes negligible for ge' » g,. Obviously in this limit
the linear approximation breaks down. The nonlinear terms of the RG equation will
generate perturbations Of(g+ q)e’) from the perturbations 0;(ge) and O,(q’¢). Again
if g+4q' # 0 then these perturbations are negligible for sufficiently large /.
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(iiiy If however g+4q' = 0 then the RG procedure generates homogeneous per-
turbations. Since for large ! all other perturbations become negligible, we may forget
the perturbations with g # 0 for large . Then we apply the inverse RG procedure to this
translational invariant Hamiltonian until we return to / = 0 and obtain a Hamiltonian
H{3} with the expansion (1.2) for 2. Since the free energy is conserved under the total of
this transformation, we have F = F{g}.

In § 2 we introduce the RG equation with smooth momentum cut-off and the eigen-
operators O*q) of its linearized version. We derive the RG equation for the corres-
ponding fields x and 4 (sources in field theoretic language). The fields p describe the
homogeneous Hamiltonian and the inhomogeneous perturbations are added with
coupling constants A:

H=H*+ Y 10t + Y 40Kq) (1.8)

To facilitate further derivations we eliminate the contributions nonlinear in u by intro-
duction of the scaling fields g in § 3. We transform the Hamiltonian to the form (1.1)
where the perturbation Zk;0,(q;) transforms in linear order in x but all order in u
resp. g into Zk;e”'0(g;¢”"). This is a first step to introduce scaling field f(g) for the
inhomogeneous perturbations. In §4 we derive the RG equation for x. This enables
us to obtain the equations for the coefficients M and a RG equation for the correlation
function G in § 5. In § 6 we discuss the two-point correlation functions. Finally in § 7
we introduce the scaling fields f(g) to higher order in x and discuss the three-point
correlations. We find that the regular part R of M is absorbed into . This is in agree-
ment with Ma’s discussion (1974) of correlation functions in terms of scaling fields f.
The singular part S of M appears in the expansion of g in powers of f.

2. Renormalization group equations

In this section we formulate the RG equation given by Wilson and Kogut (1974) in a
form suitable for our problem. This yields equations (2.17)H2.21). Wilson derived
(apart from some constants which he could neglect) the RG equation with smooth
momentum cut-off:

dH 0H d oH

— =dV_— = VS, |—d¢

al Vav+f(2sq+q S‘f)asqdq

T 1) dYy 2.1)

+f s 20, FH__sH oH
P\ 58,5505, 35,05,

where S, are the Fourier components of the classical variable S(r), S, = [ d*rS(r)e™'?.
p(q) is an appropriate function of g whose Fourier transform is of short range. The first
term and the first integral on the right-hand side describe the change of the Hamiltonian
under a simple change of the length scale ¢ —» g¢'. The second integral transforms the
variables according to (Wegner 1974):

S, = S, +Alp(g)(S,—SH/3S _). (2.2)
If one chooses the representation

1
H= VL-0+vlso+%fcz(q)s,,s_qd‘q+§ j%(ql.qz)sqlsqzs_q,_qz dig, dig, + ... (2.3)
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for the translational invariant system then the volume V enters only via the constant v,.
The transformation (2.1) is constructed in such a way that the free energy of the total
system is conserved. The fixed-point Hamiltonian obeys

dH*/dl = 0. (2.4)
We add a perturbation y,0% to H* where Of is translational invariant. This yields in
linear order in y; a contribution w,LO¥ to dH/dl with
L= J. dq(dS,/2+ p(q)S,+qVS,— 2p(q)0H*/S _ ,+ p(q)d/0S _ )0/dS,. (2.5)

We define the eigenperturbations OF by
LO} = y,0. (2.6)

Next we consider a local perturbation 0, (an operator which decays within a distance
1/q, from the origin) which obeys

LO; = —x0,. (2.7)

The operator can be written as a functional of the components S,. We construct the
operator Or) by replacing any S, in O, by S,¢'”. One finds from equations (2.5) and
(2.7) that

LO(r) = —x,0(r)—rvO(r). (2.8)

Therefore a perturbation Or) transforms under the change of the length scale by €
according to

Or) - e *i0re". (2.9)
From this equation we deduce that

0tg) = [ ¢rBrre 2.10)
transforms according to

0%(q) — e“~*"0¥(q &) (2.11)
and comparison with (2.6) for ¢ = 0 yields (OF = 0*(0)):

yi = d-—,\'l (212)

provided that O¥(0) does not vanish. Note that from equation (2.8) one derives
LVO, = —(x;+1)VO,. (2.13)

In the following we will restrict ourselves to operators Of(g) with O}0) # 0 since the
Fourier transform of VO}(r) can be expressed by O}(q):

f d4 VO r)e ' = igO¥q). (2.14)

We return to equation (2.1) which is bilinear. Therefore a perturbation
4;0%q;}+ 4,0¥(q,) will add a contribution

A 2 aixONa;+ g4 (2.15)
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to dH/d! with
* *
_2'[ (20 50( )
(s Q

= Z a;jk(qu ‘Ik)ol*(q]*"h)'*' V5q1+qk,006jk(qj' i) (2.16)
3

d'q

Now we are able to write down the equations for du/d! and di/d/.
The Hamiltonian

Ho = H* + ¥ ;0% + Y 14q)0H4q) (2.17)
transforms into

H, = H*+ Y 1 (DO* + ¥ 2(g; " DOXg; &) (2.18)
with
difg)dl = yid@)+3 Y a:uld1- 90419400200 4, « 0o+ 2, 415idd: 002 (2.19)

du/dl = yu+3 Y a0, 0 (2.20)
where

d/dl = é/él+qd/dq. (2.21)

The separation between 4,(0) and y; is arbitrary. We choose the separation so that u(/)
depends only on the initial values of u{0). A constant perturbation to the Hamiltonian
V u, is distinguished in so far as it enters on the right-hand side of equation (2.1) only in
the first term which yields y, = 4. Secondly only the Fourier component g = 0 con-
tributes. Therefore equations (2.19) and (2.20) apply for py and 44(0).

3. Scaling fields for the perturbations in linear order

If we neglect those terms in equation (2.19) which are quadratic in A then we obtain

difg)/dl = yii{q)+ Z a;jk(qs )AL (3.1
For u; = 0 we obtain the solution
Alg, D) =eifge ", 0) (3.2)

with (2.21). To take into account the second term on the right-hand side of equation
{3.1) we introduce scaling fields fi(g) in analogy to the scaling fields g, in Wegner (1972)
and Wegner and Riedel (1973). In these references we expressed the fields y; in terms of
g/'s:

t=pilg) = g&i+1) bipgigt .. (3-3)
which obey exactly

dg/dl = y;g,. (3.4)
Similarly we expand

fl@) = 3 pif9)ifg)+O(?) (3.5)
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and require

dfi(q)/dl = of/ol+qV, f; = y. fla). (3.6)

The terms of order A2 in equation (3.5) are necessary to take care of the terms of order
A% in equation (2.19). We will return to these termsin § 7. Here it is sufficient to consider
the term linear in /.

The expansion coefficients p;{q) depend on the fields g. Therefore we obtain

Y (D+qV )P ADA D+ Y Py A+ Y Puttia: O (q) = vi ). piAf9) (3.7
J Jks J

J

with

D=F pgs (3.9)

=2 Vi8s :
X ¢ kagk

Equating the coefficients of £ (q) we find

(D+qV +y;—yIp.f@)+ kZ Pu(@)ai;(q. O)uslg) = 0. (3.9)
Let us expand p;{(q) in powers of the scaling fields g:

pifq) = cif)+ Y ciul@)g, + 08 (3.10)
then we obtain

@V +y;—ydefg =0 (3.11)

(qvq +yi—n+ yk)cijk(q) = - Z Cis(q)a;jk(Q* 0), (3.12)

etc. The solutions depend on the boundary conditions. We require that f = 4 for
g = 0, that is

cifg) = 9, (3.13)
which yields

(qV+y,—yitydeip@) = —aiulq. 0). (3.14)

Equation (3.14) can be written in the form

(90/0q9+2)U(q) = I(q) (3.15)
with ¢ = U and I = —a'. Since we will deal several times with equations of this type
we give a discussion. The formal solution of this equation reads

q

Ua) =47 [ dp 100 (3.16)
The lower bound of this integral depends on the boundary condition. If we choose

lim U(g) =0 (3.17)

g x

then we obtain

U.(g) = —q-ZJ dp p*~ 1(p) (3.18)
q
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provided that I(p) decays sufficiently rapidly. On the other hand we may require (we
will do so for equation (3.14)) that I(p) behaves regularly at ¢ = 0. Then we will split
off all powers p™ from I(p) withm < —z:

Kp) = ) cup™ +1x(p) (3.19)
with

lim (Ir(p)p*) = 0. (3.20)

p=0

This can be done provided that I(p) can be expanded in a Taylor expansion and no
power p~? occurs. (If I(p) contains a term proportional to p~* then a logarithmic
contribution ¢ 77 In g in U(g) is inevitable ; however we will not discuss these logarithmic
terms here.) From equation (3.19) we obtain the solution regular at ¢ = 0:

Uglg) = — T coglm+2)+q"F f dp p* () (3.21)
0

The solutions U,(g) and U _(q) differ by the solution sq~* of the homogeneous equation
(90/6q+2)Uy(g) = 0. (3.22)

We determine the constant s by
Ulg)= —-q°* f dp pz“(}: cnp™—q"" f dp p*~ ' 1x(p)
q

= — ¥ caim+2)- f dp p*~1Ix(p) = Uola)—s(z. g~ (3.2

where s is given by
el = | dpp i) (3.24)
0

For the coefficients ¢;;(g) of equation (3.10) we require a regular behaviour at g = 0.
Therefore we expand in accordance with equation (3.19):

al”jk(p’ ) = ai_(l)k}+a£jkp+ ;l)(p +auk(p* O) (325)
with
U< y—=y, e <t+l (3.26)

Then we obtain

q
Z afRq" m = yi+ yy+ ) =" f aiip. O)p ™' 71 dp (3.27)
]

where p points in the direction of g (the coefficients aﬁ',’,‘" may depend on the direction
of ¢ too). Substituting c;;(g) in equation (3.9) we may iterate higher-order terms in g
and thus obtain the formal expansion for the scaling field f in powers of g to linear order

in A
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4. The RG equation for the perturbations O,(q)

The scaling fields g; and f{q) in equations (3.4) and (3.6) have simple transformation
properties

gD = e*g0) (4.1)

fag. ) = e"f(ge™". 0). 4.2)
Therefore the Hamiltonian

Hy = H{g;. f(9)} (4.3)
transforms under the renormalization group into

H, = H{e"'g(0).e"'f(ge ™"} (4.4)
Therefore the Hamiltonian

Ho, = H{g}+ Y x:04a;. {g}). (4.5)
where

0lg) = alg}fq)f ! . (4.6)

will transform into
H,=Hige"}+ Z i €'0(g; €. {g &'}) + Ofk?). 4.7

We will now consider the contributions nonlinear in x. Let us start from the Hamil-
tonian (4.5) and perform an infinitesimal transformation to [ = §; we obtain

H; = H{ge’} + Z (1+y:8)0{q; . {ge*?))

+5 Z a;"j'k'(qj'- qk)/.-j‘(qj)/“k’(qk)o;'.f(qj+ q)+ 0(52) (4.8)

ik

where the last term comes from the nonlinear contribution in equation (2.19). We
express the last term in terms of k. From

o 0H
((@)0igq) = (g)—~ el
Y k(@)0dq) = ¥ l(q)af( | =Y x(q) 3 |,
= Y k(@)t:{9)0¥g) = Y A:(q)0¥(q) (4.9)
with
dA;
teda) = S (4.10)
we deduce
Ailg) = Z tedg)xiq) (4.11)
and

049) = ¥ t:{9)0¥(q). (4.12)
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Similarly we obtain

xd{q) = Y. pul@)Ailq) (4.13)
and

O¥q) = X pi(9)04a). (4.14)

Substituting equations (4.11), (4.14) into equation (4.8) we obtain the equation for
dx/dl:

difg)/dl = yida)+3 Y Apld1- 4205 (4:)K,(q2)80 4, + 4, (4.15)
with

Ayddi 42) = 2 Pilds +42)a @1 420t £a5)0enl92) (4.16)

The matrix ¢ is the inverse to p:

gpiM)t,-k(q) = Y (8f/04)(@4,/8f) = du. (4.17)
Therefore we obtain an expansion in powers of g from the expansion (3.10):

tA9) = 8= X ciu@gi+ Olg?). (4.18)
A differential equation for ¢ can be obtained from the expression

%“ talqV+ D) (pyty) (4.19)

and from substitution of equations (3.9), (4.17) which yields
(@V+D—y+ytifa) = 3. aindd. Otif@uslg}- (4.20)
ks

In §§2-4 we wrote down the RG equations for the inhomogeneous perturbations
A{@)0¥ (@) and transformed them to equations for perturbations x,{(g)O{q). These
new perturbations depend on the thermodynamic variables via the scaling fields g
(equations (4.12), (4.18)). This dependence is smooth in g and g as long as no logarithmic
corrections arise. The advantage of these new perturbations is the more simple form of
the equation (4.15) for the change of the amplitudes k under the RG transformation which
in linear order is much simpler than equation (2.19). In the following sections we will
derive the correlation functions for the operators O,(q) starting from equation (4.15).
We expect that 4;;(q, . q,) is a smooth function of the wavevectors g and of the fields g.
since we expect these properties for a;;, and the matrices p and ¢.

5. Expansion coefficients M of the correlation functions

Let us return to our aim, the calculation of the correlation functions. We consider the
correlations

Gjija i1+ 92+ 4a) = €0,,(41)0,(q3) - - - 0,,(4,)> (5.1

with ¢, +q,+ ... +q, = 0, but demand that the momenta g; as well as the sum of any
subset of the ¢’s do not vanish (that is we do not consider exceptional momenta). Then
the function (5.1) equals its cumulant and we may express it as the nth derivative of the
free energy F:

G = 3"F/dx;(qy) . . . K, (dn). (5.2)
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As outlined in the introduction we apply the RG procedure to the Hamiltonian (4.5).
Then the wavevectors g will grow exponentially with . The nonlinear terms will
generate perturbations O((q;+q,)e’) from the perturbations Ofg;e') and O,(g¢").
As soon as all the wavevectors g ¢’ and the sums (g;+ g, + .. )e' of the subsets are large
in comparison to the ‘cut-off momentum’ ¢, the contributions of these wavevector-
dependent perturbations are small, as can be seen from the examples given by Wilson
and Kogut (1974) in appendix A for the trivial fixed point. We will assume that this
property holds in general. Then all of these wavevector-dependent perturbations can
be neglected and only a homogeneous perturbation Z; x,())O; survives where O, = 6H/dg;.

H, = H{g e} + ¥ (o, (5.3)
k) = M i@y, gn D (q0) .. K5 (@) + (5.4)

Since M obeys the asymptotic behaviour k() oc e (it coincides with f; in first order)
we expect a finite limit:

lim e™'My, ;@1 4u ) = My, (410 q). (5.5)

[Rade]

After neglecting the inhomogeneous perturbations we apply the inverse RG procedure
and transform the Hamiltonian (5.3) to [ = 0 which yields

H=H{g+ Y My, ;41 40%;,(d1) . 1 (g)0i+ O™ 1), (3.6)
thus

A = H{3} (3.7)
with

§=g+M; ;a1 a)%,(q1) . k(@) +OK"™ ). (5.8)

If we allow for arbitrary perturbations X x{g;)0{(g,) then we may write

1
g =g+ Z;{}Z Mijl...j,.(ql’ e qn)Kjl(ql) e Kj,,(qn) (5.9)

where we take into account that any product of the x’s appears n! times in the sum
(if several perturbations O{q;) coincide one has to introduce a corresponding symmetry
factor in equation (5.8)). Since the free energy is invariant under the total of these
transformations, we obtain

C"F(@)

G= M oMy @ a0 (510
3x;,(41) - - 0K (qn) Z 5& ; inindis o @ )X0D (5.10)

We may equally well express the correlation functions as

Gt ..(q1.---q.) = <O}(qy)... 0k (q,))
= Z My @is 4Py - Do (@)t COE . (5.11)

iy . jnh

To analyse the non-analytic behaviour of the correlation functions we need an equa-
tion for the coefficients M. Since both Hamiltonians (4.5) and (4.8) yield the same
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Hamiltonian (5.3), we obtain

My, (- G0 802D

=M, (g€ ... {ge’}1-0)

+4 Z A4, qZ)Misj:;.,,j“(ql +45,q5 .-, 181D+ ... (5.12)
to first order in  with the abbreviation
yi=vyit+ ooty (5.13)

The last term and + ... on the right-hand side of equation (5.12) stand for the terms
made up from the in(n—1) pairs (iy, i;), (i;, i3) ... (i,~ 1, i,). We make use of the asymp-
totic behaviour (5.5) of M for large I and obtain

My, 041 g0 (8))
= CU" _"’)6M,«j1,,,j,,(q1 eé v {g eyé})+5 Z Asju'z(ql’qz)Mis' (514)

Differentiating with respect to & yields the equation
9> q;V;+D+y,—yIMy;,. 54y q0)
= =Y Ay (01 8)Mogy 01+ 42005 (8= (5.15)

We note that
M, =6, (5.16)
since a homogeneous perturbation x,0, transforms into itself, and that
limM,; ;(q....q)=0 forn > 1, (5.17)
- x
since the nonlinear terms do not contribute for |g;| » g,. One can easily integrate

equation (5.15) with the boundary conditions (5.17) since it is of the type (3.15). With the
substitution

p=bg (5.18)
we find

M 4y ...q,.8)
=Zf dbbo "4, (g:b. 42b, (gh”))
s 1

X M, j,.((‘h +4q2)b, q3b,... (g + ... (5.19)

From this recurrence relation and the initial condition (5.16) we may iterate the ex-
pansion coefficients M to arbitrary order n.

From equations (4.15),(5.2)and F(H,) = e~ “F(H,) one derives similarly the equation
for the correlation function:

(D+ Z qjvj+y‘l—d)G11~ jn(qlv e qn)
= — X 4., 4:)Gs;,. ;1 +92. 43 - . - 4,)— permutations, (5.20)

This equation differs from equation (5.15) in so far as it can be applied for any momenta
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whereas equation (5.15) applies only for non-exceptional momenta. Inapplyingequation
(5.20) we replace continuously products of operators by single operators. This corre-
sponds to the idea of the operator product expansion and the reduction hypothesis
(Wilson 1969, Kadanoff 1969, Polyakov 1969).

6. Two-point correlation functions

We apply the results of § 5 to two-point correlation functions. Equation (5.15) yields
with condition (5.16) to the equation

(@0/0g+D+y,+ V= YIMijnlq. — @) = —Ayjnld. — ) (6.1)
with the solution
Mg —q (g))=¢g" "> f dp p " r T A (p. — poglp/g)). (6.2)
q
Let us expand A in powers of g:

Aijm(pv -pg = ZcijmK(p)gK (6.3)
K

where gg stands for any product of g’s.

gk = 8.8k -+ Bk (6.4)

Then we obtain
Mijm = Z qy-—y,—ym—yngJ. dp p-yl+y;+ym+yx— lcijmK(p)' (6.5)
K q
The functions

q"’f dp p*~ 'e(p)
q

with

2= =i+ Y+ Vmt Ik (6.6)
are the solutions U, of the differential equation (3.15):

(g 0/0g+2)U(g) = c(9). (6.7)
Since we are interested in the behaviour of M{q) for small g we use equation (3.23):

U@ =Uyg)—sq7*° (6.8)
and obtain

M = Rijm+ Sijm- (6.9)

where R is the solution of equation (6.1) which is regular at ¢ = 0:
R;im(q. {g}) = Z rimk(9)8k (6.10)
K
and S is the solution

Simq. (8)) = @7 7S e, {8/9°)) = g» 7T Y SimkEk/ P {(6.11)
K
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of the homogeneous equation with
Sijml( = f dppy1+ym+m—yl_1C5mK ) (612)
o}

In general s;;,,x depends on the direction e = ¢/|q|. Again we do not discuss any logarith-
mic factors which may arise if y,— y,— y,,— yx is a non-negative integer.

Therefore the two-point correlation function can be written:
Gimld. —4) = €0,(9)0,(= 9> = X (Riju(q. {g))+ 7" 77 ""Syule. {8/ KO (6.13)

where R and S are completely determined from the functions a;; in equation (2.16).
The second contribution to G,

Ginlg. —q) = 2 ¢ 7" Symle. {8/4°1)00 . (6.14)

obeys scaling. If we multiply g by b, g, by b”, then G* is multiplied by b? 7~ since
{0,> = 0F/dg, scales like b* 7, which follows from

F{gb"} = b’Flg;} (6.15)

(note that O, according to the definition O, = 0H/0g; depends on the variables g;).
If we approach the critical point then the scaling fields of the relevant operators tend to
zero (g — 0), whereas the scaling fields g|”" of the irrelevant operators approach some

constant. Therefore normally one considers the scaling behaviour for the transformation

q — bg, gi*' - b"gl!, gi™ - ¢i". Since the scaling exponent y; is positive for relevant

and negative for irrelevant operators, we find in the limit b — 0 that the contributions
rel

from gt! in the scaling function survive whereas the contributions from g'""yield correc-
tions to scaling. The leading scaling behaviour is given by

Gla. —a) = 2 ¢ 7 Sinle {10 car- (6.16)

All operators O, contribute to the scaling behaviour. However, it is only necessary
to consider these expectation values as functions of the relevant scaling fields gi°', since
the irrelevant fields yield (under certain restrictions, see Wegner 1972) only corrections
to the leading scaling behaviour. If y;+y > d then the scaling part of the correlation

function (6.16) dominates the ‘regular’ contribution:
GiHg, —q) = Z Rijm(q. {10 . (6.17)

If however y;+y, < d then the regular contribution may yield the leading term. If
for example the critical exponent a of the specific heat is negative (2—a = d/yg), then
the energy—energy correlation does not become singular at the critical point since it
scales like g? =278 = g ®F,

Equation (6.16) allows an expansion of the correlation function in (fractional)
powers of ¢~ ! in the critical region. In a system with two relevant operators Og and O,
(crudely speaking energy and magnetization) one obtains contributions

2\ (8
qYl-: th
where in linear order the scaling field gg is the temperature difference from the critical
temperature, and g, is the magnetic field (not all of the terms (6.18) will appear because

nh

gm0,y (6.18)
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of symmetries : symmetry of the system under reversal or rotation of the order parameter,
conformal invariance).
For the spin-spin correlation function one obtains among others the contributions

q 2t for ng = n, =0, 0,=1 (6.19a)
with 2—n = 2y,—d,

g tn v for ng = 1, n, =0, 0,=1 (6.19b)

g 2tnmd-alheoLy forng=mn,=0 (6.19¢)

as proposed by Fisher and Langer (1968). Fisher and Aharony (1973) showed that
these terms are consistent with an expansion of the correlation function to second order
in ¢ = 4—d. These terms were derived in an ¢ expansion from the Callan-Symanzik
equation by Brezin et al (1974a). Besides, Brezin et al (1974b) derived a contribution
proportional to

g 2T At eN(S, S, — 06,8 n) (6.19d)

for the n-vector model (n > 1), where ¢ is the cross-over exponent for anisotropic
perturbations (Riedel and Wegner 1969). Hecht (1967) calculated the spin—energy
correlation function of the two-dimensional Ising model in zero magnetic field. He
obtained in leading order in g~ ! the term

(SHq7! (6.20)

which agrees with equation (6.18) for ng = n, = 0, since y; = 1 in this model.

7. Scaling fields, three-point correlations

In §§ 3, 4 we calculated the scaling fields f to first order in 4. We called the operators
(@ f=0

and expressed the perturbations to the translational invariant Hamiltonian H{g} in
terms of the fields «:

H = Hig}+ ) x{(q)0q). (4.5)

= 0{q (4.6)

In this section we expand the scaling fields f in powers of k:

) = kd@+3 Y Pylqy - 9206 q00)%u(d2)8 4 g, + g
1
+ ? z Pijkm(ql ’ q2 ’ q3)Kj(qI)Kk(q2)Km(q3)5q,q1 +g3+4q3 +O(Ka) (71)

To do this we calculate the derivative of equation (7.1) with respect to I and insert the
equations of motion (3.6), (4.15):

yikid@) +3y: Y Ppldy s 4206 Ad)K(42)84 4, + 4,
= yx'Ki(CI)'*‘%Z Aijlqy, 9% (0,)%82)04 4, + 4,
+% Z O, +nt+ q:Vi+q,V,+ D)R‘jk",(%)“k(%) +O(x>) (7.2)
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which yields the differential equation

(q,V:+4q,V,+D +y, - yi)Pijk(ql » 42, {g}) = - Aijk(ql - 4q3)- (7.3)
We demand that the scaling fields show a regular behaviourat g, = g, = 0. Thesolution
can be found similar to that of equation (6.1). For g, = —¢, = g equation (7.3) reduces
to

@V+D+y;+y—y)Pula. —q) = —Aiplg. —q) (7.4)

which is the equation for M. Since however P,;(q. —q. {g}) has to be regular at
q = 0 we have from equation (6.9) the solution .

Pijk(Qa —-q) = Rijk(q)' (7.5)
Collecting the terms of order x> in equation (7.2) we obtain
Q3Pumldy. 42-93) = — 2. Py{dy. 42+ 93)Agem(d2 - 93) — permutations (7.6)
with

0, =‘11V1+‘I2V2+f13V3+D+Yj+)’k+ym"yi- (1.7

Again we choose the solution P regular at g, = g, = g3 = 0.
Now we discuss the derivatives of the free energy F with respect to the scaling fields
f. The free energy obeys for a fixed volume (in the thermodynamic limit) the relation

F(H(D)) = e F(H(0)). (7.8)

Since f; and g, transform according to equations (3.4) and (3.6) we obtain for F in terms
of fand g:

Fige’ f(ge. D) = ef(g.0)} = e” Fig, f(g, 0)}. (7.9)
Differentiating equation (7.9) with respect to fi(g) yields the scaling law
O"Flge')joffq, €)... = e N FF/of(q,). ... (7.10)

Therefore we obtain
3*F

ex{q)ox(—q)

_ Z_____asz _OF, Yy O°F
Ox{q)0x {(— q) of; 0k, Ox; of,.of;
O*F

fl@of(—aq)

where we used equation (7.1) and 0F/df, = <0,>. Comparison with equations (6.9).
(7.5) shows that

O*F/of{q)off—q) = ;Skij(q’ {80 (7.12)

0{q)0(—q)) =

= ;Pm(qq -0+ Y, (7.11)

which indeed is a homogeneous function. Ma (1974) has pointed out that starting from
an equation like (7.9) one finds that O,(¢)0 ( — g) does not show the exact scaling behav-
iour but 0{q)0(—q)+ 0,4q. —q) does, where

0:/q. —q) = *H/3f()of{—q). (7.13)
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From equation (7.1) one immediately finds that
kiq) = fz(‘I)"'% Z Pijk(ql s qZ)fj(ql).fk(qZ)éq,ql +43 (7.14)
which yields
Oij(qv —-q)= — Z Pki,(‘]» —q)0,. (7.15)
k
which confirms Ma’s result.

Let us go one step further and shortly consider the three-point correlation functions.
From equation (5.15) we obtain (g, +4,+45 = 0):

QsM jm(d1: 92 93) = — Y M, (9. —41)Aumq2- g3) — permutations. (7.16)

One obtains

M (@192 93) = Rijml@1- 92 43)+ Sijumld1 92+ 93)
+ Y. Si(d1)Pyn(d2 . 43) + permutations. (7.17)

One obtains the last terms on the right-hand side of equation (7.17) from the contri-
butions of §;;, to M,;; where we make use of the homogeneity of the function S. R, is
the solution, regular at g, = g, = q; = 0, of

Q3Rijm = — 2 Rijd1)A5mid2 . 43)— permutations (7.18)
and S;;,, obeys the homogeneous equation
QSSijkm - 0 (719)

It is defined uniquely by the boundary condition (5.17). On the other hand one shows
by evaluating the terms of order x in equation (7.2) and comparing with equation (7.18)
that

Pijkm = Rijkm' (7.20)
One can now easily verify that
63F/6f1(q1)6ﬁ((q2)6f,,,(q3) = Z Sijkm(ql* 42+ 430 (7.21)

We may finally express g, of equation (1.2) in terms of the scaling fields f;. Using
equations (6.9), (7.1), (7.18) and noting that equation (7.1) applies also for g = 0 with
vanishing k,(g = 0), we find that

gi= g+ fi+5Y S5a — D f—D+ ... (7.22)

The general picture which emerges from this calculation is the following: the free
energy of the Hamiltonian (1.1) with inhomogeneous perturbations is equal to the free
energy of a translational invariant Hamiltonian H{g} where 2 is given by the expansion
(1.2). This allows the calculation of wavevector-dependent correlations in terms of
expectation values of homogeneous operators. The expansion coefficients M of g
obey differential equations (5.15) which can be calculated from the expansion coefficients
A of the renormalization group equation (4.15). The coefficients M can be expressed in
terms of a function R which is regular for small g and g, and a singular homogeneous
function S (equations (6.9), (7.19)). If one introduces the scaling fields fthen the functions
R and S assume a meaning of their own (although they are related by the boundary



726 FJ Wegner

condition (5.17)). The functions R are now the expansion coefficients of fin powers of
the fields « (equation (7.1)), and the functions S are the expansion coefficients of g; in
powers of the scaling fields f; (equation (7.22)).
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