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Correlation functions near the critical point 

F J Wegner 
Institut f u r  Theoretische Physik, Universitat Heidelberg. D69 Heidelberg, Germany 

Received 24 October 1974 

Abstract. Using renormalization group arguments we expand n-point correlation functions 
(for non-exceptional wavevectors) in expectation values of translational invariant short- 
range operators 0,. We use the fact that the Fourier components of our operators become 
negligible for wavevectors 4 large in comparison to the momentum cut-off. 

The correlation functions show the same non-analyticities at the critical point as the 
expectation values (0,). The expansion coefficients are regular in the thermodynamic 
variables for 4 # 0. They can be expressed in terms of (a) functions which become singular 
at 9 = 0 and yield the scaling behaviour, and (b) functions which are regular at 4 = 0. 
The expansion coefficients of the two-point correlation function are sums of both types of 
functions. 

1. Introduction 

The static correlation functions show two characteristic features near the critical point : 
(a) they obey scaling and (b) they show a non-analytic behaviour even for finite wave- 
lengths as a function of the thermodynamic variables. These properties are discussed 
on the basis of renormalization group (RG) ideas (Wilson 1971, Wilson and Kogut 
1974) in this paper. 

Consider the free energy F of the Hamiltonian 

H = H I g )  + C Kj(qj)O,(qj) (1.1) 

(a factor - l/k,T is incorporated in H and F) .  where H i g )  is translational invariant and 
parametrized by scaling fields g (Wegner 1972). The terms K(q)O(q) are perturbations of 
wavelength q. We find that the free energy of this system equals the free energy F { g )  
of the translational invariant Hamiltonian H { g }  where we have an expansion 

j 

The coefficients M can be calculated from the RG equation. This confirms and refines 
a conjecture by Fisher (1962) (compare Riedel and Wegner 1969) according to which 
inhomogeneous perturbations to a system near criticality leave the non-analytic struc- 
ture of the free energy basically unchanged but change the critical parameters, such as 
critical temperature. Indeed the condition for criticality is jji = 0 for all relevant opera- 
tors. Therefore at criticality we have gi = - $ C M K K +  . . . (actually Fisher considered 
an Ising antiferromagnet in a homogeneous magnetic field. but this is equivalent to an 
Ising ferromagnet in a staggered magnetic field). Differentiating F with respect to K~ 
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and K~ one obtains the representation for the correlation function ( q  # 0) : 

(O,(q)Ok(-q))  = 1 Mijk(q)(oi). (1.3) 
i 

Therefore the correlation function (1.3) shows the same non-analyticities as a function 
of the thermodynamic variables as the expectation values ( O i )  = ( 6 H / d g i ) .  

The expansion coefficients M consist of two contributions 

M . .  rJk = R. .  LJk + S . .  LJk (1.4) 

where R is a regular function of q and of the g's (provided no logarithmic singularities 
appear; logarithmic corrections will not be discussed in this paper), whereas the singular 
part S obeys scaling: 

(1.5) 

with e = q/1q1 (y's are the scaling exponents of the operators). S can be expanded in 
powers of gr/qYr. If yj+yk > d (d  is the dimensionality of the system), then the leading 
scaling behaviour of the two-point correlation function near the critical point is given by 

sij,,q, {g,)) = q Y ' - Y J - Y k  Sijk(e, (gr /qYr) )  

where i runs over the indices of all operators and g;' runs only over the fields of the 
relevant operators (the fields of the irrelevant operators provide corrections to the 
scaling behaviour). This is in agreement with the expression for the spin-spin correlation 
function proposed by Fisher and Langer (1968), 

(1.7) 

(T = T - r), where the first two terms come from (1) and the third term from the ex- 
pectation value of the energy (H-ECrit). Fisher and Aharony (1973) showed that this 
ansatz is consistent with an expansion of the correlation function around dimensionality 
four and they determined the coefficients. Brezin et a1 (1974a) and Brezin et a1 (1974b) 
derived equation (1.7) from the Callan-Symanzik equation (compare Symanzik 1971) 
and generalized it to the case of a finite magnetic field and allowed for temperatures 
below T, .  They found a further contribution to the spin correlation function of the 
n-vector model (n > 1) which scales like ( S i S j - 6 i j S 2 / n ) .  This term differs from zero 
below T,  or for a finite magnetic field. Hecht (1967) calculated the spin-energy correlation 
in the two-dimensional Ising model and found ( S ) q - ' .  All of these contributions are 
contained in equation (1.6) which gives the general behaviour of the scaling part of the 
correlation function. 

To obtain equation (1.2) we transform the Hamiltonian (1.1) using the RG procedure. 
This procedure has the following effects. 

(i) It reduces the length scale by a factor e' and therefore transforms the perturbations 
O,(q) into perturbations eyJ'O,(qe'). Within linear approximation this yields the scaling 
law for the correlation function if we bear in mind that the scaling fields g, transform 
into g ,  eyr'. 

(ii) If one chooses a RG equation with smooth momentum cut-off of order qo,  
then the perturbation O,(qe') becomes negligible for qe' >> qo. Obviously in this limit 
the linear approximation breaks down. The nonlinear terms of the RG equation will 
generate perturbations OL((q + q')e') from the perturbations Oj(qe') and Ok(q'e'). Again 
if q + q' # 0 then these perturbations are negligible for sufficiently large 1. 

(S,s-,) = q-2f s (~+BT/q1 'v+C(T(1-" /4 (1 -a ) 'v+  . . .) 
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(iii) If however q+q' = 0 then the RG procedure generates homogeneous per- 
turbations. Since for large 1 all other perturbations become negligible, we may forget 
the perturbations with q # 0 for large 1. Then we apply the inverse RG procedure to this 
translational invariant Hamiltonian until we return to 1 = 0 and obtain a Hamiltonian 
H ( g }  with the expansion (1.2) for 8. Since the free energy is conserved under the total of 
this transformation, we have F = F i g } .  

In $ 2 we introduce the RG equation with smooth momentum cut-off and the eigen- 
operators OT(q) of its linearized version. We derive the RG equation for the corres- 
ponding fields p and 1 (sources in field theoretic language). The fields p describe the 
homogeneous Hamiltonian and the inhomogeneous perturbations are added with 
coupling constants 1 : 

H = H* + C piOT + LiOT(qi). 
To facilitate further derivations we eliminate the contributions nonlinear in p by intro- 
duction of the scaling fields g in 4 3. We transform the Hamiltonian to the form (1.1) 
where the perturbation XKjOj(qj) transforms in linear order in K but all order in p 
resp. g into E K ~  eYJ'Oi(qj eyJ'). This is a first step to introduce scaling field f ( q )  for the 
inhomogeneous perturbations. In $ 4  we derive the RG equation for K. This enables 
us to obtain the equations for the coefficients M and a RG equation for the correlation 
function G in $ 5 .  In $ 6 we discuss the two-point correlation functions. Finally in $ 7 
we introduce the scaling fields f ( q )  to  higher order in K and discuss the three-point 
correlations. We find that the regular part R of M is absorbed into$ This is in agree- 
ment with Ma's discussion (1974) of correlation functions in terms of scaling fields $ 
The singular part S of M appears in the expansion of g in powers of 1: 

2. Renormalization group equations 

In this section we formulate the RG equation given by Wilson and Kogut (1974) in a 
form suitable for our problem. This yields equations (2.17H2.21). Wilson derived 
(apart from some constants which he could neglect) the RG equation with smooth 
momentum cut-off: 

- dH = d V g +  i ( i S , + q V S q ) g d d q  
dl av 

6 H  d2H 6 H  6H 
S - + - - - - - - - - -  

4 6 S ,  G S , S S - ,  6S, 6S-, 

where S ,  are the Fourier components of the classical variable S(r) ,  S ,  = J ddrS(r) e-iqr. 
p(q) is an appropriate function of q whose Fourier transform is of short range. The first 
term and the first integral on the right-hand side describe the change of the Hamiltonian 
under a simple change of the length scale q + q e'. The second integral transforms the 
variables according to (Wegner 1974) : 

S ,  + S q + A l p ( q ) ( S , - 6 H / 6 S - , ) .  
If one chooses the representation 
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for the translational invariant system then the volume Venters only via the constant u 0 .  
The transformation (2.1) is constructed in such a way that the free energy of the total 
system is conserved. The fixed-point Hamiltonian obeys 

dH*ldl = 0. (2.4) 

We add a perturbation piOy to H* where Oy is translational invariant. This yields in 
linear order in pi a contribution piLOT to dH/dl with 

L = ddq(dS,~2+p(q)S,+qVS,-2p(q)6H*!6S_,+p(q)6/6S_,)6/6S, .  (2.5) 

LOT = 4',OT. (2.6) 

We define the eigenperturbations 0: by 

Next we consider a local perturbation d, (an operator which decays within a distance 
l/qo from the origin) which obeys 

(2.7) 

The operator can be written as a functional of the components S,. We construct the 
operator O,(r) by replacing any S, in 0, by S, e',*. One finds from equations (2.5) and 
(2.7) that 

- 
LO, = -.Yidi. 

Ldi(r)  = - xidi(r)- rVOi(r). (2.8) 
Therefore a perturbation d,(r) transforms under the change of the length scale by e' 
according to 

b,(r) + e-xJdi(r  e-'). (2.9) 

From this equation we deduce that 

Or(q)  = ddrdi(r) e-',' (2.10) s 
(2.1 1 )  

and comparison with (2 .6)  for q = 0 yields (0: O,*(O)): 

yi = d - . y ,  (2.12) 

LVd, = -((.U,+ l)Vd,. (2.1 3 )  

provided that OT(0) does not vanish. Note that from equation (2.8) one derives 

In the following we will restrict ourselves to operators O:(q) with OT(0) # 0 since the 
Fourier transform of VO:(r) can be expressed by OT(q) : 

ddrVd,(r) e-',' = iqOr(q). (2.14) 

We return to equation (2.1) which is bilinear. Therefore a perturbation 
i jO?(q j )+ &O?(qk) will add a contribution 

(2.15) 
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to dH/dl with 

(2.16) 

Now we are able to write down the equations for dp/dl and di./dl. 
The Hamiltonian 

Ho = H* + p iO$  + Li(qi)0:(qi)  (2.17) 

transforms into 

HI  = H* + pi(l)O: + c I.,(qi ef, l)O,*(q, e') 
with 

(2.18) 

dii(q)/dl = Y i i i ( q ) + i  1 a;jk(ql * 42)E.j(41)Ak(q2)dq,q, + q 2 +  c aiJkjq3 O)I.j(q)pk (2.19) 

dl"i/dl = Y#i + ' ; j k ( O ,  O)pjpk 7 (2.20) 

d/dl = d/dl+qd/dq. (2.21) 

where 

The separation between A,(O) and pi is arbitrary. We choose the separation so that p i ( l )  
depends only on the initial values of p j (0 ) .  A constant perturbation to the Hamiltonian 
Vpo is distinguished in so far as it enters on the right-hand side of equation (2.1) only in 
the first term which yields y o  = d .  Secondly only the Fourier component q = 0 con- 
tributes. Therefore equations (2.19) and (2.20) apply for p o  and Ao(0). 

3. Scaling fields for the perturbations in linear order 

If we neglect those terms in equation (2.19) which are quadratic in A then we obtain 

Ai(q, I )  = eY"Ai(q e-', 0) (3.2) 

with (2.21). To take into account the second term on the right-hand side of equation 
(3.1) we introduce scaling fields f ; ( q )  in analogy to the scaling fields gi in Wegner (1972) 
and Wegner and Riedel(l973). In these references we expressed the fields pi in terms of 

,fli = ,fci [ g ]  = gi + 1 bgjkgjgk + . . . (3.3) 

dgi/dl = y g , .  (3.4) 

gi's : 

which obey exactly 

Similarly we expand 

(3.5) 
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The terms of order i.’ in equation (3.5) are necessary to take care of the terms of order 
3.’ in equation (2.19). We will return to these terms in 9 7. Here it is sufficient to consider 
the term linear in i.. 

The expansion coefficients pii(q) depend on the fields g .  Therefore we obtain 

1 ( D +  qvq)Pijq)Aj(q)+ 1 PijYJ’i(q)+ 1 pika;js(q. ‘)PS’’i(q) = L’i 1 Pijij(q) (3.7) 
j J j k s  J 

with 

(3.10) 

(3.1 1) 

(3.12) 

We require that f = i. for 

(3.13) 

(3.14) 

(3.15) 

with c = U and I = -a ’ .  Since we will deal several times with equations of this type 
we give a discussion. The formal solution of this equation reads 

U(q)  = q-’[ dp p Z - l I ( p ) .  (3.16) 

The lower bound of this integral depends on the boundary condition. If we choose 

lim U(q)  = 0 
q -  = 

(3.17) 

then we obtain 

(3.18) 
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provided that I ( p )  decays sufficiently rapidly. On the other hand we may require (we 
will do  so for equation (3.14)) that I ( p )  behaves regularly at q = 0. Then we will split 
off all powers p" from I ( p )  with m < - z : 

(3.19) 

(3.20) 

This can be done provided that I ( p )  can be expanded in a Taylor expansion and no 
power p-'  occurs. (If I ( p )  contains a term proportional to p- '  then a logarithmic 
contribution q-' In q in U(q)  is inevitable; however we will not discuss these logarithmic 
terms here.) From equation (3.19) we obtain the solution regular at 4 = 0 :  

(3.21) 

The solutions Uo(q)  and U X ( q )  differ by the solution sq-' of the homogeneous equation 

(3.22) (qd'2q + z)U,(q) = 0. 

We determine the constant s by 

m 

l . X  

= - l c m q m / ( m + z ) - q - ' J  dppZ-'IR(p) = U,(q)-s(z . I )q- '  (3.23) 
4 

where s is given by 

S(Z. I) = dp p'- ' I , ( p )  io: (3.24) 

For the coefficients c i j k ( q )  of equation (3.10) we require a regular behaviour at q = 0. 
Therefore we expand in accordance with equation (3.19) : 

(3.25) 

Then we obtain 

L' 

c i j k ( q )  = 1 a l ~ ) q m / ( m - y i + J ' j + y , ) - q y i - y J - y k  Ioq a!R(p, IJk O)p-'-Yy,*4.J+y~d P (3.27) 

where p points in the direction of q (the coefficients a&) may depend on the direction 
of q too). Substituting C i j k ( q )  in equation (3.9) we may iterate higher-order terms in g 
and thus obtain the formal expansion for the scaling field f in powers of g to linear order 
in A. 

m = O  
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4. The RG equation for the perturbations O,(q) 

The scaling fields g, and fi(q) in equations (3.4) and (3.6) have simple transformation 
properties 

gi(l) = e'Jg,(O) (4.1) 

firs. r )  = eyltr;:(q e-'. 0). (4.2) 

H o  H{gi- fi(q)} (4.3) 

Therefore the Hamiltonian 

transforms under the renormalization group into 

H, = H{eYJgi(o). eyiffi(q e-')}. 

Therefore the Hamiltonian 

Ho = H{g) + KiOi(qi* Cg}X 
where 

will transform into 

H ,  = H(gi eyif} + 1 K~ eygfOi(qi e', {g e''))+ O ( K ~ ) .  

(4.4) 

(4.5) 

(4.6) 

(4.7) 

We will now consider the contributions nonlinear in K .  Let us start from the Hamil- 
tonian (4.5) and perform an infinitesimal transformation to 1 = 6 ;  we obtain 

H ,  = H{geYd)+ E ~ ~ ( l + y , S ) O ~ ( q ~ e ' .  {geY6j) 
i 

6 
+- 2 i , j , k ,  1 nl?,,Aqj. qk)j.j'(qj)j'k,(qk)Oi(qj+ qk)  + o(s~) (4.8) 

where the last term comes from the nonlinear contribution in equation (2.19). We 
express the last term in terms of K .  From 

(4.9) 

(4.10) 

(4.1 1) 

(4.12) 
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The matrix t is the inverse to p :  

2 Pijq)tjk(q) = 1 (afi/ai.j)(2E.j/2h) = 6 i k '  
j 

Therefore we obtain an expansion in powers of g from the expansion (3.10): 

A differential equation for t can be obtained from the expression 

1 lik(qV + D ) ( p k l t l j )  
k l  

and from substitution of equations (3.9), (4.17) which yields 

(qv + D - Y i  f yj)ti,(q) = a:ks(4, o ) tk jq)&{g] .  
k s  

(4.17) 

(4.18) 

(4.19) 

(4.20) 

In g2-4  we wrote down the RG equations for the inhomogeneous perturbations 
i i (q)OT(q)  and transformed them to equations for perturbations ki(4)Oi(q) .  These 
new perturbations depend on the thermodynamic variables via the scaling fields g 
(equations (4.12), (4.18)). This dependence is smooth in g and 4 as long as no logarithmic 
corrections arise. The advantage of these new perturbations is the more simple form of 
the equation (4.15) for the change of the amplitudes K under the RG transformation which 
in linear order is much simpler than equation (2.19). In the following sections we will 
derive the correlation functions for the operators O,(q) starting from equation (4.1 5) .  
We expect that A i j k ( q l ,  42)  is a smooth function of the wavevectors q and of the fields g. 
since we expect these properties for aijk and the matrices p and 1. 

5. Expansion coefficients M of the correlation functions 

Let us return to our aim, the calculation of the correlation functions. We consider the 
correlations 

(5.1) 

with q 1  + q 2  + . . . + q, = 0, but demand that the momenta q j  as well as the sum of any 
subset of the q's do not vanish (that is we do not consider exceptional momenta). Then 
the function (5.1) equals its cumulant and we may express i t  as the nth derivative of the 
free energy F : 

Gjlj2 . j.(41* q 2 .  . . 4.1 = (Oj,(q1)Oj2(q2). . . Ojn(qn)) 

G = d n F / a K j l ( q l ) .  . . a ~ ~ , ( q , , ) .  (5.2) 
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As outlined in the introduction we apply the RG procedure to the Hamiltonian (4.5). 
Then the wavevectors q will grow exponentially with 1. The nonlinear terms will 
generate perturbations O,((qj+ qk)e') from the perturbations O,(qj e') and ok(qk e'). 
As soon as all the wavevectors q ef and the sums (qj+ qk + . . .)e' of the subsets are large 
in comparison to the 'cut-off momentum' qo the contributions of these wavevector- 
dependent perturbations are small, as can be seen from the examples given by Wilson 
and Kogut (1974) in appendix A for the trivial fixed point. We will assume that this 
property holds in general. Then all of these wavevector-dependent perturbations can 
be neglected and only a homogeneous perturbation Z i  ~ ~ ( 4 0 ~  survives where U i  = a H / d g i ,  

Since M obeys the asymptotic behaviour K ~ ( [ )  a eyif (it coincides with fi in first order) 
we expect a finite limit : 

After neglecting the inhomogeneous perturbations we apply the inverse RG procedure 
and transform the Hamiltonian (5.3) to 1 = 0 which yields 

thus 

R = H ( g }  

with 
(5.7) 

Bi = g i + M i j , .  .jn(ql 3 . . . q n ) K j I ( q 1 ) .  . . Kj, (qn)+O(K"+ '). (5.8) 

If we allow for arbitrary perturbations KAqj)OAqj) then we may write 

(5.9) 

where we take into account that any product of the K'S appears n!  times in the sum 
(if several perturbations O,(qj) coincide ope has to introduce a corresponding symmetry 
factor in equation (5.8)). Since the free energy is invariant under the total of these 
transformations, we obtain 

We may equally well express the correlation functions as 

Gf?i. . k , , ( q l r  ' ' '  4.) = (U?l(ql).  . . O?"(qn)) 

To analyse the non-analytic behaviour of the correlation functions we need an equa- 
tion for the coefficients M .  Since both Hamiltonians (4.5) and (4.8) yield the same 
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Hamiltonian (5.3), we obtain 

f i i j l , , , j J q l - ,  . q n .  fgj. O 
- - eYJd&j., j n ( q l e d . . . ,  (geyd],.1-6) 

+ 6 C ~ s j ~ j * ( q l , q 2 ) f i i s j 3 , , , j ~ q l  + q 2 9 q 3  . . . >  {g),O+ ' . .  (5.12) 
S 

to first order in 6 with the abbreviation 

y ,  = yj, + . . . + yj; (5.13) 

The last term and + . . . on the right-hand side of equation (5.12) stand for the terms 
made up from the in(.- 1 )  pairs ( i l ,  i2), ( i l ,  is),  . . . (in- 1 ,  in) .  We make use of the asymp- 
totic behaviour (5.5) of &j for large I and obtain 

Mijl j n ( q  t * . . . q n .  IgJ) 
- - e'), -Yt)JM,, l , l , , , jn(ql e'. . . {g eY6})+6 Asjljl(qt 5 q2)Mis. (5.14) 

S 

Differentiating with respect to 6 yields the equation 

(5.1 5) 

M .  = 6 . .  (5.16) 11 11 

since a homogeneous perturbation transforms into itself, and that 

lim Mljl...],(41 1 .  ' . 4") = 0 for n > 1 .  (5.17) 

since the nonlinear terms do  not contribute for )qjl >> qo .  One can easily integrate 
equation (5.15) with the boundary conditions (5.17) since it is of the type (3.15). With the 
substitution 

P = b9 (5.18) 

4-= 

we find 

MijI ... jn(ql 3 . . . q n -  g) 

= dbb\~-Yi-l Asj,jZ(qlb, q2b$ jgbY) )  

x Misj3. j,((q1 +q2)b, q3b9 . . [gbYJ) + ' . . (5.19) 

From this recurrence relation and the initial condition (5.16) we may iterate the ex- 
pansion coefficients M to arbitrary order n. 

From equations (4.15), (5.2)and F(H, )  = e-d'F(H,) one derives similarly the equation 
for the correlation function : 

(D + qjVj+ Y,-W,~.. j,(q1, . . ' 4 " )  

= - AsjljI(q1, q2)Gsj3...jn(ql + q 2 *  q 3 .  ' .  qn)-~ermutations. (5.20) 

This equation differs from equation (5.15) in so far as it can be applied for any momenta 
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whereas equation (5.15) applies only for non-exceptional momenta. In applying equation 
(5.20) we replace continuously products of operators by single operators. This corre- 
sponds to the idea of the operator product expansion and the reduction hypothesis 
(Wilson 1969, Kadanoff 1969. Polyakov 1969). 

6. Two-point correlation functions 

We apply the results of 8 5  to two-point correlation functions. Equation (5.15) yields 
with condition (5.16) to the equation 

(qa/aq + D + L', + Y m  - yi)Mijm(q* - 4) = - A i j m ( 4 .  - 4 )  (6.1) 

with the solution 

M ,  IJm (4, - 4  > I  l g ) )  = q Y i - Y j - Y m  I J m b '  - P* g(p/q)')' (6'2) 

Let us expand A in powers of g : 

Aijm(p. - p ?  g )  = C i j m K ( P ) g K  
K 

where g K  stands for any product of g's. 

(6.3) 

g K  = g k , g k Z  ' ' . g k r .  (6.4) 

Then we obtain 

M i j m  = 1 q Y 8 - Y J - Y m - m  gK j4' dp p - Y z + Y j + Y m + Y K -  1 C i j m K ( P ) .  (6.5) 
K 

The functions 

q-' dp p'-'c(p) 
4 

with 

z = - ) ' i + Y j + y m f Y K  (6.6) 

(4 aia4 + W ( q )  = c(q) .  (6.7) 

U & )  = U,(4)-W-' (6.8) 

are the solutions U ,  of the differential equation (3.15): 

Since we are interested in the behaviour of M ( q )  for small q we use equation (3.23) : 

and obtain 

where R is the solution of equation (6.1) which is regular at 4 = 0 

K 

and S is the solution 

(6.10) 
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of the homogeneous equation with 

Si,mK = sb;'dp ~ Y I + L " + Y K - Y Y I - ~  c i  R jmK(P) ,  (6.12) 

In general sijmK depends on the direction e = q//qI. Again we do not discuss any logarith- 
mic factors which may arise if  y i  - y j  - y ,  - y K  is a non-negative integer. 

Therefore the two-point correlation function can be written : 

GjJq.  - 4 )  = (o,(q)O,(-q)) = C (Rijm(q3 I g ) ) + q Y 1 - Y J - Y m  Sijm(e, { g / q y ) ) ) ( O i )  (6.13) 
i 

where R and S are completely determined from the functions aljk in equation (2.16). 
The second contribution to G, 

G;,(q, - q )  = q Y t - ) J - Y m  Sijm(e9 { g / q y } ) ( o i )  % (6.14) 

obeys scaling. If we multiply q by b ,  g i  by b y i ,  then Gs is multiplied by b d - y I - y m  since 
( O i )  = dF/?gi  scales like b d P Y i ,  which follows from 

F { g i b y l )  = bdF{g i3  (6.15) 

(note that Oi according to the definition Oi = d H / d g ,  depends on the variables gi). 
If we approach the critical point then the scaling fields of the relevant operators tend to 
zero (gf'l -, 0), whereas the scaling fields g:" of the irrelevant operators approach some 
constant. Therefore normally one considers the scaling behaviour for the transformation 
q + bq, g f "  + bY'gfe', girr + gi". Since the scaling exponent y i  is positive for relevant 
and negative for irrelevant operators, we find in the limit b + 0 that the contributions 
from gf" in the scaling function survive whereas the contributions from g i r r  yield correc- 
tions to scaling. The leading scaling behaviour is given by 

i 

G?3q3  -4 )  = C 4 Yz - Y I  - Y m  Si j m ( e ,  { g r e l / q Y f )  < 0i) r a t  (6.16) 

All operators O i  contribute to the scaling behaviour. However, it is only necessary 
to consider these expectation values as functions of the relevant scaling fields g y ' ,  since 
the irrelevant fields yield (under certain restrictions, see Wegner 1972) only corrections 
to the leading scaling behaviour. If y j + y m  > d then the scaling part of the correlation 
function (6.16) dominates the 'regular' contribution : 

i 

(6.17) 

If however y j + y ,  < d then the regular contribution may yield the leading term. If 
for example the critical exponent a of the specific heat is negative ( 2 - a  = d /y , ) ,  then 
the energy-energy correlation does not become singular at the critical point since it 
scales like q d - 2 y E  = q - " Y E .  

Equation (6.16) allows an expansion of the correlation function in (fractional) 
powers of 4 - l  in the critical region. In a system with two relevant operators 0, and 0, 
(crudely speaking energy and magnetization) one obtains contributions 

(6.18) 

where in linear order the scaling field g ,  is the temperature difference from the critical 
temperature, and g ,  is the magnetic field (not all of the terms (6.18) will appear because 
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of symmetries : symmetry of the system under reversal or rotation of the order parameter, 
conformal invariance). 

For the spin-spin correlation function one obtains among others the contributions 

q - 2 + v  for nE = nh = 0, oi = 1 (6.19~)  

with 2 - = 2yh - d, 
5 for nE = 1, nh = 0, 0, = 1 (6.19b) 

(0,) for nE = nh = 0 (6.19~) 

as proposed by Fisher and Langer (1968). Fisher and Aharony (1973) showed that 
these terms are consistent with an expansion of the correlation function to second order 
in E = 4-d. These terms were derived in an E expansion from the Callan-Symanzik 
equation by Brezin er a1 (1974a). Besides, Brezin et a! (1974b) derived a contribution 
proportional to 

4 - - - d  +8’’ (S,S, - 6,8s2/n> (6.1 9d) 

for the n-vector model (n =- l), where 4 is the cross-over exponent for anisotropic 
perturbations (Riedel and Wegner 1969). Hecht (1967) calculated the spin-energy 
correlation function of the two-dimensional Ising model in zero magnetic field. He 
obtained in leading order in q -  the term 

4 - + v -  l ”  

4 - + -d’” 

( S X  (6.20) 

which agrees with equation (6.18) for nE = nh = 0, since y ,  = 1 in this model. 

7. Scaling fields, three-point correlations 

In $5 3, 4 we calculated the scaling fields f to first order in A. We called the operators 

and expressed the perturbations to the translational invariant Hamiltonian H { g )  in 
terms of the fields K :  

In this section we expand the scaling fieldsf in powers of K : 

fi(q) = K i ( q ) + i  c pijk(ql  3 q 2 ) K j q 1 ) K k ( q 2 ) 6 q , q 1  + q 2  

(7.1) 
1 

pijkm(ql  9 q 2 ,  ~ 3 ) K ~ q 1 ) K k ( ~ 2 ) K m ( ~ 3 ) 8 q . q l  + q 2  + q l + o ( K 4 ) .  

To do this we calculate the derivative of equation (7.1) with respect to I and insert the 
equations of motion (3.6), (4.15): 
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which yields the differential equation 

(qlVl + q 2 v 2  + + L’j + L’k - L’i)Pijk(q, 3 q 2  3 {g)) = - Aijk(ql q 2 ) ‘  (7.3) 

We demand that the scaling fields show a regular behaviour at q1 = q2 = 0. The solution 
can be found similar to that of equation (6.1). For q1 = - q 2  = q equation (7.3) reduces 
to 

(qv + + 4’j f L’k - Yi)Pijk(q- - 4)  - Aijk(q* - 9) (7.4) 

which is the equation for hfijk. Since however Pijk(q. -9. {g)) has to be regular at 
4 = 0 we have from equation (6.9) the solution A 

pijk(q,  -9) = R i j k ( q ) .  

Collecting the terms of order K~ in equation (7.2) we obtain 

(7.5) 

QJPijkm(q1. q 2 *  q3) = - CPijs(q1. 42fq3)Askm(q2, q3)-Permutations (7.6) 

with 

Q3 = qlv, +42V2+43v3 +D+L’j+L’k+L’m-J’i. (7.7) 

Now we discuss the derivatives of the free energy F with respect to the scaling fields 
Again we choose the solution P regular at q1 = q2 = q3 = 0. 

1: The free energy obeys for a fixed volume (in the thermodynamic limit) the relation 

F(H(T)) = ed’ F(H(0)). (7.8) 

Sincef, and g, transform according to equations (3.4) and (3.6) we obtain for F in terms 
off and g :  

(7.9) F{g ey’, f ( g  e’, I )  = eytf(g, 0)) = ed’ F{g. f ( q ,  0)). 

Differentiating equation (7.9) with respect tof,(q) yields the scaling law 

PF{g eY’}/df,(qr e’). . . = e(d-yi--,)’ dnF/df,(ql). . . . (7.10) 

Therefore we obtain 

(7.1 1) 

where we used equation (7.1) and dF/& = (ok). Comparison with equations (6.9). 
(7.5) shows that 

(7.12) 

which indeed is a homogeneous function. Ma (1974) has pointed out that starting from 
an equation like (7.9) one finds that Oi(q)Oj( - q) does not show the exact scaling behav- 
iour but Oi(q)OJ{ - q)  + Oiiq.  - q )  does, where 

Oij(q, - 4 )  = d2H/af i (q )aL{ -q ) .  (7.13) 
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From equation (7.1) one immediately finds that 

Ki(q) = fi(q)-$ p i j k ( q l  7 q2)fj(ql)fk(q2)6q,ql + q 2  (7.14) 

which yields 

(7.1 5) 

which confirms Ma's result. 

From equation (5.15) we obtain (ql + q2 + q3 = 0) : 

Q~Mijkm(q1, q 2 3  q 3 )  = - c Mijs(q1- - q l ) A s k m ( q Z ,  'I3)-Permutations. 

One obtains 

Let us go one step further and shortly consider the three-point correlation functions. 

(7.16) 
S 

M,jkm(ql, 42.q3) = R i j k m ( 4 1 . 4 2 . 4 3 ) + S i j k m ( 4 1 ,  qZ3 q 3 )  

+ 1 s j j s ( q l ) p s k m ( q 2 .  q 3 )  +permutations. (7.17) 

One obtains the last terms on the right-hand side of equation (7.17) from the contri- 
butions of Sijs to Mijs where we make use of the homogeneity of the function S .  Rijkm is 
the solution, regular at q1 = q2 = q 3  = 0, of 

(7.18) Q 3Ri j k m  = - i js(4 I )Askm(q 2 9 4 3 )  - Per"Jtations 

and Sijkm obeys the homogeneous equation 

Q3Sijkm = 0. (7.19) 

It is defined uniquely by the boundary condition (5.17). On the other hand one shows 
by evaluating the terms of order K~ in equation (7.2) and comparing with equation (7.18) 
that 

(7.20) 

One can now easily verify that 

a 3 ~ / a f , ( q l ) a f k ( q 2 ) a f m ( q 3 )  = 1 sijkm(ql * q 2 ,  q3)('i). (7.21) 

We may finally express gi of equation (1.2) in terms of the scaling fields f,. Using 
equations (6.9), (7.1), (7.18) and noting that equation (7.1) applies also for q = 0 with 
vanishing K i ( q  = 0), we find that 

(7.22) 

The general picture which emerges from this calculation is the following : the free 
energy of the Hamiltonian (1.1) with inhomogeneous perturbations is equal to the free 
energy of a translational invariant Hamiltonian H { g }  where g is given by the expansion 
(1.2). This allows the calculation of wavevector-dependent correlations in terms of 
expectation values of homogeneous operators. The expansion coefficients M of g 
obey differential equations (5.1 5) which can be calculated from the expansion coefficients 
A of the renormalization group equation (4.15). The coefficients M can be expressed in 
terms of a function R which is regular for small q and g, and a singular homogeneous 
function S (equations (6.9), (7.19)). If one introduces the scaling fieldsfthen the functions 
R and S assume a meaning of their own (although they are related by the boundary 

I 

g i  = gi+fi+$csijkCq, -q)fj(q)fk(-q)+ " .  ' 
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condition (517)). The functions R are now the expansion coefficients offin powers of 
the fields K (equation (7.1)), and the functions S are the expansion .coefficients of g i  in 
powers of the scaling fieldsf, (equation (7.22)). 
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